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1 Introduction

Variability of semantic expression is a fundamental phenomenon of a natural
language where same meaning can be expressed by different texts. Natural
Language Processing applications like Question Answering, Summarization, In-
formation Retrieval systems etc. often demand a generic framework to capture
major semantic inferences in order to deal with the challenges created by this
phenomenon. Textual Entailment can provide such framework.

Textual Entailment can be defined as the phenomenon of inferring a text
from another. Entailment is a directional relation between two texts. This
relation holds when the truth of one text fragment follows from the truth of the
other. Conventionally, the entailing fragment is called as text and entailed one
is called as hypothesis. Textual entailment is classically defined as:

Classical Definition: A text t entails hypothesis h if h is true in every cir-
cumstance of possible world in which t is true.

This definition is very strict since it requires truthfulness of h in all the in-
stances where t is true. Due to uncertainties in the real world applications, this
definition is not very helpful. Hence applied definition of Textual Entailment is
presented:

Applied Definition: A text t entails hypothesis h if human reading h will
infer that h is most likely true.

Again, this definition is abstract for systems trying to implement Textual En-
tailment. Thus mathematically precise and computable definition using proba-
bilities is provided:

Mathematical Definition (Glickman et al., 2005): Hypothesis h is en-
tailed by text t if

P (h is true | t) > P (h is true) (1)

P (h is true | t) is the Entailment Confidence and can be considered as a
measure of surety of entailment.

A better insight can be obtained from the following examples:
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1. T: iTunes software has seen strong sales in Europe.

H: Strong sales of iTunes in Europe.
(RTE-1 Development Dataset, ID 13)

2. T: Cavern Club sessions paid the Beatles 15 evenings and 5 lunchtime.

H: The Beatles perform at Cavern Club at lunchtime.

3. T: American Airlines began laying off hundreds of flight attendants on
Tuesday.

H: European Airlines laid off their flight attendants.

4. T: Oracle had fought to keep the forms from being released.

H: Oracle released a confidential document.
(RTE-1 Development Dataset, ID 12)

According to the classical definition of entailment, only (1) is a true entailment.
While (1) and (2) both are valid entailments according to the applied definition,
truthfulness of hypothesis in (3) cannot be determined by truthfulness of the
text. A clear contradiction can be seen in (4). From the mathematical definition,
it can be deduced that entailment confidence (given as P (h is true | t)) will be
very high for (1). Confidence will be high for (2) though it will not be as high
as that of (1). (3) will yield a lower score since entailment can not be shown.
In case of (4), a clear contradiction states that whenever t is true, h has to be
false and thus confidence score in this case is 0.

In the subsequent sections, a variety of approaches used to recognize text
entailment will be discussed.

2 Evaluation Forum: RTE Challenges

The goal of the RTE competition is (as stated in PASCAL RTE challenge):

The recognizing textual entailment is an attempt to promote an
abstract generic task that captures major semantic inference needs
across applications.

This encourages the creation of the generic framework to capture semantic in-
ference.

2.1 Evaluation measures

The results of the RTE tasks are evaluated against human gold standard. The
following are the metrics used:

• Accuracy The accuracy of a Text entailment system is the ratio of correct
entailment decision to the total number of entailment problem.

• Precision The precision of Text entailment system is the ratio of number
of correctly predicted entailment to the number of predicted entailment.
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• Recall The recall of Text entailment system is the ratio of number of
correctly predicted entailment to the actual number of correct entailments.

2.2 RTE 1 (2005)

The first PASCAL Recognizing Textual Entailment Challenge (15 June 2004 - 10
April 2005) (Dagan et al., 2005) provided the first benchmark for the entailment
task and it was an initial attempt to form a generic empirical task that captures
major semantic inferences across applications. The challenge raised noticeable
attention in the research community, attracting 17 submissions from research
groups worldwide. The relatively low accuracy achieved by the participating
systems suggests that the entailment task is indeed a challenging one, with a
wide room for improvement.

Participants in the evaluation exercise were provided with pairs of small text
snippets (one or more sentences in English), which are termed Text-Hypothesis
(T-H) pairs. The data set includes over 1000 English T −H pairs from the news
domain (political, economical, etc.). Examples are manually tagged for entail-
ment (i.e. whether T entails H or not) by human annotators and are divided
into a Development Set (one third of the data) and a Test Set (two thirds of
the data). The dataset was collected with respect to different text processing
applications, such as Question Answering, Information Extraction, Information
Retrieval, Multi-document Summarization, Paraphrase Acquisition, etc. Exam-
ples showed different levels of entailment reasoning such as lexical, syntactic,
morphological and logical. Participating systems had to decide for each T −H
pair whether T indeed entails H or not, and results were compared to the man-
ual gold standard.

An interesting observation from the results was that the performance of the
system did not correlate with the system complexity. The maximum precision
obtained was 0.7, by Perez et al., using simple word overlap techniques.

2.3 RTE 2 (2006)

Similar to the first RTE challenge, the main task is judging whether a hypothesis
H is entailed by a text T . One of the main goals for the RTE-2 data set is to
provide more realistic text-hypothesis examples, based mostly on outputs of
actual systems (Bar-Haim et al., 2006). RTE 2 received 23 submissions which
presented diverse approaches and research direction. The best results obtained
were considerably higher than RTE 1’s state of the art.

Focus of the dataset was on the four application settings: Question Answer-
ing (QA), Information Retrieval (IR), Information Extraction (IE) and Multi-
document Summarization. Each portion of the data set includes typical T −H
examples that correspond to success and failure cases of such applications. The
highest accuracy achieved was 0.7538 with a precision of 0.8082 by Andrew
Hickl. Machine Learning Classification-based approach was used.
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2.4 RTE 3 (2007)

RTE 3 follows the same basic structure of the previous challenges, in order
to facilitate the participation of newcomers and to allow “veterans” to assess
the improvements of their systems in a comparable test exercise (Giampiccolo
et al., 2007b). Nevertheless, the following innovations are introduced to make
the challenge more stimulating and, at the same time, to encourage collaboration
between system developers:

• a limited number of longer texts, i.e. up to a paragraph - in order to
move toward more comprehensive scenarios which incorporate the need for
discourse analysis. However, the majority of examples were kept similar
to those in the previous challenges, providing pairs with relatively short
texts.

• provision of an RTE Resource Pool where contributors have the possibility
to share the resources they use.

• a pilot task, “Extending the Evaluation of Inferences from Texts”, set up
by US National Institute of Standards and Technology (NIST), which ex-
plored two other tasks closely related to textual entailment: differentiating
unknown from false/contradicts and providing justifications for answers.

The best result was obtained by Hickl and Bensley (Hickl and Bensley, 2007)
with accuracy of 80% and precision of 88.15%. It was a considerable amount of
improvement over the existing state of art. Approach was to extract all possible
discourse commitments (publicly-held beliefs) from the text and match them
with hypothesis.

2.5 RTE 4 (2008)

In 2008 the Recognizing Textual Entailment challenge (RTE-4) was proposed for
the first time as a track at the Text Analysis Conference (TAC) (Giampiccolo
et al., 2007a). RTE-4 included the 3-way classification task that was piloted
in RTE-3. The goal of making a three-way decision of Entailment, Contra-
diction and Unknown is to drive systems to make more precise informational
distinctions; a hypothesis being unknown on the basis of a text should be distin-
guished from a hypothesis being shown false/contradicted by a text. The three
way classification task lead to a slight decrease of the accuracies of the system.
The highest accuracy was 0.746 again by LCC’s Bensley and Hickl using the
LCC’s GROUNDHOG system (Hickl et al., 2006).

2.6 RTE 5 (2009)

RTE-5 was proposed as a track at Text Analysis Conference in 2009. The main
RTE-5 task was similar to the RTE-4 task, with the following changes(Bentivogli
et al., 2009):

• The average length of the Texts was higher.
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• Texts came from a variety of sources and were not edited from their source
documents. Thus, systems were asked to handle real text that may include
typographical errors and ungrammatical sentences.

• A development set was released.

• The textual entailment recognition task was based on only three applica-
tion settings: QA, IE, and IR.

• Ablation tests were made mandatory.

In addition to the main task (Textual Entailment Recognition), a new Textual
Entailment Search pilot task was offered that was situated in the summarization
application setting, where the task was to find all Texts in a set of documents
that entail a given Hypothesis. 21 teams participated in the RTE-5 challenge
out of which 20 submitted the systems for main task while 8 teams tried to
tackle the pilot task.

In the main task, the highest accuracy obtained was 0.6833. In the search
pilot task, the highest F-score obtained was 45.59.

Search pilot task introduced the real interaction between RTE task and
Summarization task allowing the analysis of the impact of textual entailment
recognition on a real NLP application.

2.7 RTE 6 (2010)

The RTE-6 tasks focus on recognizing textual entailment in two application
settings: Summarization and Knowledge Base Population.

• Main Task (Summarization scenario): Given a corpus and a set of
“candidate” sentences retrieved by Lucene from that corpus, RTE sys-
tems are required to identify all the sentences from among the candidate
sentences that entail a given Hypothesis. The RTE-6 Main Task is based
on the TAC Update Summarization Task. In the Update Summarization
Task, each topic contains two sets of documents (“A” and “B”), where all
the “A” documents chronologically precede all the “B” documents. An
RTE-6 Main Task “corpus” consists of 10 “A” documents, while Hypothe-
ses are taken from sentences in the “B” documents.

• KBP Validation Pilot (Knowledge Base Population scenario):
Based on the TAC Knowledge Base Population (KBP) Slot-Filling task,
the new KBP validation pilot task is to determine whether a given relation
(Hypothesis) is supported in an associated document (Text). Each slot fill
that is proposed by a system for the KBP Slot-Filling task would create
one evaluation item for the RTE-KBP Validation Pilot: The Hypothesis
would be a simple sentence created from the slot fill, while the Text would
be the source document that was cited as supporting the slot fill

Thus RTE-6 did not include the traditional RTE Main Task of judging the
entailment between a pair of isolated Text-Hypothesis pair. The Main Task was
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based only on the Summarization application setting and was similar to the
pilot Search Task introduced in RTE-5 with following changes:

• RTE-6 hypotheses were taken from sentences in the “B” documents, rather
than from human-authored summaries of the “A” documents.

• A smaller number of candidate sentences were retrieved by Lucene baseline
instead of searching for entailing sentences from the entire corpus.

• The exploratory effort on resource evaluation continued through ablation
tests for the new RTE-6 Main Task.

The change in the task setting increased the difficulty level of the task which
was reflected in the results. The highest F-measure was 0.4801. Debarghya
from IIT, Bomabay, was placed third with the F-score of 0.4756 (Bhattacharya,
2012). The base-line F-score was 34.63.

2.8 RTE 7 (2011)

The RTE-7 tasks focus on recognizing textual entailment in two application
settings: Summarization and Knowledge Base Population.

• Main Task (Summarization setting): Given a corpus and a set of
“candidate” sentences retrieved by Lucene from that corpus, RTE sys-
tems are required to identify all the sentences from among the candidate
sentences that entail a given Hypothesis. The RTE-7 Main Task is based
on the TAC Update Summarization Task. In the Update Summarization
Task, each topic contains two sets of documents (“A” and “B”), where all
the “A” documents chronologically precede all the “B” documents. An
RTE-7 Main Task “corpus” consists of 10 “A” documents, while Hypothe-
ses are taken from sentences in the “B” documents.

• Novelty Detection Sub-task (Summarization setting): In the Nov-
elty Detection variant of the Main Task, systems are required to judge
if the information contained in each H (based on text snippets from B
summaries) is novel with respect to the information contained in the A
documents related to the same topic. If entailing sentences are found for
a given H, it means that the content of H is not new; if no entailing
sentences are detected, it means that information contained in the H is
novel.

• KBP Validation Task (Knowledge Base Population setting):
Based on the TAC Knowledge Base Population (KBP) Slot-Filling task,
the KBP validation task is to determine whether a given relation (Hy-
pothesis) is supported in an associated document (Text). Each slot fill
that is proposed by a system for the KBP Slot-Filling task would create
one evaluation item for the RTE-KBP Validation Task: The Hypothesis
would be a simple sentence created from the slot fill, while the Text would
be the source document that was cited as supporting the slot fill.
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A total of thirteen teams participated in this competition. The best F-score
was 0.4200. Arindam, from IIT, Bombay scored 0.3587.

RTE T-H Pairs Notable Feature
1 287 Mostly lexical systems. Results do not corre-

late with system complexities.
2 800 Application based focus. Mainly on Question

Answering (QA).
3 800 Longer sentences. RTE resource pool was cre-

ated along with it.
4 1000 Introduction of 3 way tasks.
5 600 Unedited real world text. Tasks based on QA

and Information Retrieval (IR).
6 15,955 221 hypothesis with upto 100 Lucene retireved

candidates.
7 21,420 284 hypothesis with Lucene retrieved candi-

dates. Text upto paragraph long. Based on
summarization setting.

Table 1: Evolution of RTE Challenges

The increasing complexity of the tasks and the data-set in RTE challenges is
reflected in the results. Lower accuracies show that there is still wide room for
improvement in the field of Textual Entailment. The figures are summarized
below.

• Highest accuracy score was achieved in RTE-3. 3-way classification in
RTE-4 and longer texts in RTE-5 resulted in lower accuracies.

• Most of the systems got accuracies between 55% to 65% which shows that
task of RTE is very challenging.

• Participation increased every year. Diverse approaches and research di-
rections have been presented which started to fulfill the purpose of the
RTE challenges.

3 Approaches to Recognize Text Entailment

Diverse nature and a wide number of entailment triggers increase the difficulty
of Textual Entailment task to a great extent. From morphological similarity
to lexical overlapping and from shallow syntactic comparison to deep seman-
tics extraction - different approaches are required to deal with different types
of entailment triggers. After the introduction of RTE challenges in 2005, a
spectrum of approaches have been proposed every year. A common approach
is to re-represent both the text and hypothesis (figure 4) and determine if the
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Figure 1: Comparison of accuracies of participants in RTE 1-5

Figure 2: Trend of RTE best scores

re-representation of hypothesis is subsumed by that of the text. Most of the
systems are based on Machine Learning approaches. The entailment decision
problem can be considered as a classification problem. Such systems use features
such as lexical, syntactic and semantic features.
RTE challenges provided a great platform for Textual Entailment systems and
because of it, a wide variety of approaches emerged every year. Some approaches
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Figure 3: Various Representations

were Machine Learning based approaches such as Supervised Machine Learn-
ing approach (Agichtein et al., 2008) and Tri-categorization approach to Textual
Entailment (Ren et al., 2009) which use system of classification based on lexical,
syntactic and semantic features. These systems use WordNet for semantic fea-
tures. Probabilistic approaches such as Textual Entailment based on a calculus
on dependency parse trees (Harmeling, 2009) and Modeling framework for lex-
ical entailment, with suitable EM-based parameter estimation (Shnarch et al.,
2011) were also proposed. Approaches based on tree edit distance algorithms
(Kouylekov and Magnini, 2006), (Tatu et al., 2006) and (Bar-Haim et al., 2007)
have been used. Heilman et al. (2010) propose tree edit models for represent-
ing sequences of transformation and employs tree kernel heuristic in a greedy
search routine (Heilman and Smith, 2010). Sammons et al. (2009) use shallow
semantic representation for alignment based approach. An interesting approach
for cross-lingual textual entailment is proposed by Mehdad et al. (2010) which
uses bilingual parallel corpora. They obtained good results on RTE datasets by
using monolingual parallel corpora for English language.

Machine Learning and Probability based approaches are not the only ap-
proaches used. Determining the deep semantic inferences from the text was also
proposed. Approaches based on logical inferences (Bos and Markert, 2005) and
the application of natural logic (MacCartney and Manning, 2007) yielded good
accuracy. Recently, work on the use of deep semantic inferences for Recognizing
Textual Entailment is going on in IIT Bombay. It uses Universal Networking
Language(UNL) graph representation.

4 Lexical Approaches

Lexical approaches work directly on the input surface strings. These approaches
generally incorporate some pre-processing, such as part-of-speech (POS) tagging
or named-entity recognition (NER). These approaches do not retrieve syntactic
or semantic information from the text. Entailment decisions are taken only from
the lexical evidences. Common approaches include word overlap, subsequence
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Figure 4: General Strategy

matching, longest substring using sliding window approach etc. This chapter
explains lexical approaches for recognizing textual entailment. General strategy
of lexical approaches is:

1. Pre-process the given texts to separate content words and unwanted words.

2. Re-represent the texts.

3. Compare these re-represented texts for matching

4. Decide entailment based on the matching score.

This strategy is explained in details in the subsequent sections.

4.1 Preprocessing

In lexical approaches, preprocessing step involves tokenization, stemming/ lemma-
tization and identifying the stop words. Stop words e.g. a, an, the etc., unlike
content words, do not contribute to recognition of entailment. This is because
they occur too frequently to imply any entailment. Certain systems also carry
out some deeper pre-processing tasks such as:

• Phrasal Verb Recognition: This step identifies all the phrasal verbs in
both text and hypothesis. Examples of phrasal verbs are take off, pick up
etc.

• Idiom processing: An idiom is an expression, word, or phrase that has
a figurative meaning that is comprehended in regard to a common use of
that expression that is separate from the literal meaning or definition of
the words of which it is made. There are estimated to be at least 25,000
idiomatic expressions in the English language. Examples of some idioms
are:

– You should keep an eye out for that. - to keep an eye out for
something means to watch for it.
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– I knew that Granny was pulling my leg. - to pull someone’s leg
means to tease them by telling them something fictitious.

Idioms in the form of complete sentences are known as Proverbs, if they
refer to the universal truth. For example:

– Well begun is half done.

– Nothing ventured, nothing gained.

– You can lead a horse to the river, but you can’t make him drink.

Since they mean something different from what they mean, lexical ap-
proach would fail. Therefore they are required to be treated separately.
In this step, known idioms are identified and are replaced by actual mean-
ing.

• Named Entity Recognition and Normalization: Named entities
such as name of person, company etc. are represented in various forms.
This step identify the named entities in text and hypothesis, and normal-
izes them to some single notation. One approach to normalize is replacing
spaces by underscores. For example, Leonardo DiCaprio is combined to
form Leonardo DiCaprio and United States of America is normalized as
United States of America.

• Date/Time arguments: This step is similar to Named Entity Recogni-
tion except that it identifies date and time elements.

An example:

T: Eying the huge market potential, currently led by Google, Yahoo bluetook
over search company blue Overture Services Inc. last year.

H: Yahoo acquired Overture.

In the example Overture Services Inc. and Overture are normalized by
named entity recognition and the phrasal verb took over is mapped to ac-
quired.

4.2 Representation

After the preprocessing, the text T and the hypothesis H are re-represented, in
case of lexical approaches as one of the following:

• Bag-of-words: Both T and H are represented as a set of words.

• n-grams: Sequence of n tokens are grouped together. Bag of words is an
extreme case of n-gram, with n=1, known as unigrams.

Example: Edison invented the light bulb in 1879, providing a long lasting source
of light.
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• Bag-of words: {Edison, invented, the, light, bulb, in, 1879, providing, a,
long, lasting, source, of, light}

• Bigram model (n-gram with n=2): {Edison invented, invented the, the
light, light bulb, bulb in, in 1879, 1879 providing, providing a, a long, long
lasting, lasting source, source of, of light.}

Re-representations of text and hypothesis are then compared with each other
to calculate the matching score which decides the entailment. Matching is car-
ried out on the basis of the information obtained with the help of knowledge
resources.

4.3 Knowledge Resources

Lexical Approaches typically uses shallow lexical resource such as WordNet. The
knowledge resources are used to measure the similarity between re-represented
text and hypothesis. Some of the various properties used are:

• Hyponymy: Hyponymy denotes the specialization of the concepts. Hy-
ponym relation gives the specific term used to designate a member of a
class. X is a hyponym of Y if X is a (kind of) Y . e.g. Sparrow is hyponym
of Bird and Mumbai is a hyponym of City .

• Hypernym: The generic term used to designate a whole class of specific
instances. Y is a hypernym of Xif X is a (kind of) Y . It is the reverse
relation of Hyponymy. e.g. Bird is hypernym of Sparrow and City is
Hypernym of Mumbai.

• Meronymy/Holonymy: Meronymy is the name of a constituent part
of, the substance of, or a member of something. X is a meronym of Y if
X is a part of Y . The reverse relation is Holonymy. For example, Wheel
is a meronym of Car and Orchestra is a holonym of Musician.

• Troponym: Relation which denotes manner-of. A verb expressing a
specific manner of another verb. X is a troponym of Y if to X is to Y in
some manner. Limping is troponym of Walk.

• Entailment: A verb X entails Y if X cannot be done unless Y is, or has
been, done. e.g. Snoring entails Sleeping.

4.4 Control Strategy and Decision Making

The lexical approaches employ a single pass control strategy. That means unlike
iterative methods, they reach the decision in a single iteration. Decision making
is done based on a certain threshold (decided experimentally) over the similarity
scores generated by the algorithms. The similarity scores are calculated based
on WordNet distances using properties mentioned in section 4.3.
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INPUT: Text T and Hypothesis H.
OUTPUT: The matching score.
for all word in T and H do

if word in stopWordList then
remove word;

end if
if no words left in T or H then

return 0;
end if

end for
numberMatched = 0;
for all word WT in T do
LemmaT = Lemmatize(WT );
for all word WH in H do
LemmaH = Lemmatize(WH);
if LexicalCompare(LemmaH , LemmaT ) then
numberMatched+ +;

end if
end for

end for

Figure 5: LLM Algorithm

if LemmaH == LemmaT then
return TRUE;

end if
if HypernymDistance(WH , WT ) ≤ dHyp then

return TRUE;
end if
if MeronymDistance(WH , WT ) ≤ dMer then

return TRUE;
end if
if MemberOfDistance(WH , WT ) ≤ dMem then

return TRUE;
end if
if SynonymOf(WH , WT ) then

return TRUE;
end if

Figure 6: Lexical Compare Procedure

5 Machine Learning Approaches

Entailment problem can be thought of as a YES/NO classification problem
(figure 7). Given the text T and the hypothesis H, if we are able to use various
similarity features between the texts, forming a feature vector, we can use this
feature vector to classify the problem of entailment using a standard classifier
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(say SVM classifier). Two classes can denote whether the entailment between a
pair of text and hypothesis is true (class YES ) or false (class No).

Figure 7: Textual Entailment as a Classification Task

5.1 Feature Space

Machine Learning approaches focus on the prediction, based on the properties
learnt from the training data. It is of utmost importance to determine the
feature space for the given problem and the corresponding training data. In
case of the entailment problem, possible feature space can be (Inkpen et al.,
2006):

• Distance Features Features of some distance between T and H. Smaller
distances mean that the texts are lexically, syntactically or semantically
closer.

• Entailment Triggers Features that triggers entailment (or non-entailment)

• Pair Feature Content of T-H pair

5.2 Distance Features

The distance features models the distance between the text and the hypothesis
in some way (Zanzotto et al., 2009). Machine Learning approaches can use
lexical features, too. For example:

• Number of words in common

• Length of longest common subsequence

• Longest common syntactic sub-tree

For example:

T: HDFC Bank, India’s No.3 lender, met forecasts with a 30 percent rise in
quarterly profit, led by stronger loan growth, better fee income and stable
net interest margins.
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H: HDFC Bank, expected a 30 percent rise in quarterly profit, led by stronger
loan growth, better fee income and firm net interest margins.

The above example, possible 〈feature, value〉 pair could be 〈WordsInCommon, 21〉
or 〈LongestSubsequence, 16〉.

5.3 Entailment Triggers

Entailment triggers can be used as possible features for classifiers. Some of
them are:

Polarity Features: Presence or absence of negative polarity. Since presence of
the same polarity in both the text and hypothesis may lead to entailment.

Example: Rupee was down by 5 paise against dollar in early trade. �
Rupee did not rise against dollar.

Antonymy Features: Presence or absence of antonymous words in T and H.

Example: Bank was close on that day. 2 Bank was open on that day.

Adjunct Features: Dropping/adding of syntactic adjunct.

Example Sunny goes to school. � Sunny goes to school regularly.

5.4 Pair Features

In this feature space, we try to model the content of T and H rather than
modeling the distance between them. While using this feature space, choosing
the right features is crucial. Following example illustrates why it could be bad
if we select wrong features. Lets take an example to explain the effective use of
pair feature space. Consider

T: At the end of the year, all solid companies pay dividends.

H1: At the end of the year, all solid insurance companies pay dividends.

H2: At the end of the year, all solid companies pay cash dividends.

If we would have taken distance feature, it would plot both 〈T,H1〉 and 〈T,H2〉
to be same point in feature space. What we need is something that can model the
content and the structure of the T and H. An approach is presented (Zanzotto
et al., 2009) where each T-H pair is projected to a vector that, roughly speaking,
contains as features all the fragments of parse trees of T and H.
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5.4.1 The Kernel Trick

To solve the above problem, we use a syntactic pair feature space (Bar-Haim
et al., 2007). To do this, instead of taking the features separately, we use kernels
to represent the distance between two example pairs.

Cross Pair Similarity:

K(< T ′, H ′ >,< T ′′, H ′′ >) = K(< T ′, T ′′ >) +K(< H ′, H ′′ >)

We desire the definition of K(P1, P2) to be such that it can exploit the rewrite
rules of the examples. For this, placeholders were introduced in the syntactic
tree. The cross pair similarity is based on the distance between syntactic trees
with co-indexed leaves:

K(< T ′, H ′ >,< T ′′, H ′′ >) =

max
c∈C

(KT (t(H ′, c), t(H ′′, i)) +KT (t(T ′, c), t(T ′′, i))) (2)

where,

C is the set of all correspondences between anchors of (T ′,H ′) and (T ′′,H ′′)

t(S, c) renames the anchors in the parse tree S with configuration c.

i is the identity mapping

KT (t1, t2) is a similarity measure between t1 and t2

Figure 8: Example of cross pair similarity between two parse trees.

Following example illustrates the above concept. Figure 8 shows cross pair
similarity between two parse trees Γ1 and Γ2 with the placeholders according to
two configurations c1 and c2. The configuration is selected using the definition
of K(P1, P2).
How the rewrite rules are exploited is illustrated by following example. Consider
the the pair:
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Figure 9: Intra-pair similarity after propagating the placeholders.

T: Chapman killed Lennon.

H: Lennon died.

Using the syntactic pair features and the kernel representation described above
we can learn useful rules (unlike those learned using bag of words) such as in
figure 10.

Figure 10: Exploiting rewrite rules

5.5 Classifier Algorithms

As discussed above, selection suitable features is the main problem in machine
learning based approaches. Once done, any off-the-shelf classifier can be used
for the classification tasks.

Using syntactic pair feature kernel and SVM, the accuracy of the system on
RTE 3 data set was 62.97%. Using the approach together with lexical distance
features, however, raises the accuracy up to 68.26 (Zanzotto et al., 2009).
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6 Approaches based on Graph Matching

Bag-of-words or n-gram model representation can take us only so far. For deeper
understanding of the sentences we eventually would require to show how the
words in the sentence affects each other, i.e. how are the words dependent on
each other. These dependencies could be syntactic (e.g. which phrase does the
word belong) or semantic (e.g. what role does the word play). This chapter
explores how such representation could help in the task of textual entailment.

6.1 TE as Graph Matching Problem

Textual entailment can be seen as graph matching problem. In this approach,
we convert the hypothesis H and text T into graphs. There are various ways,
syntactic or semantic, to convert a natural language sentence to graph. Once we
get the text and hypothesis graph, its about finding subsumption of sub-graphs.
We apply some graph matching techniques to determine the matching score
between the two graphs. If the score attains a certain threshold, entailment is
labeled as valid.

6.2 Comparison with Classical Graph Matching

Although the problem described above seems like a straightforward sub-graph
matching problem, we can not use existing concepts of determining match be-
tween sub-graphs. Here are the reasons:

• The scoring in Textual Entailment is not symmetric. Score between H
and T is not same as that between T and H. Classical graph matching is
however, symmetric.

• Linguistically motivated graph transformation (nominalization, passiviza-
tion) are to be considered in case of textual entailment. So, unlike classical
graph matching, we can not measure similarity at the node level.

6.3 Conversion from Natural Language Text to Graph

Here we illustrate the procedure to convert a natural language text to a depen-
dency graph. Starting with raw English text, a parser is used to obtain a parse
tree. Then, a dependency tree representation of the sentence was derived using
a slightly modified version of Collins’ head propagation rules (Collins, 1999),
which make main verbs and not auxiliaries the head of sentences. Edges in
the dependency graph are labeled by a set of hand-created rules. These labels
represent “surface” syntax relationships such as subj for subject and amod for
adjective modifier. The dependency rules are created as follows:

• Take each rule X → Y1...Yn such that:

1. Y1, ..., Yn are non terminals.
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2. n ≥ 2.

3. h = head(X → Y1...Yn).

• Each rule contributes n−1 dependencies, headword(Yi)→ headword(Yh)
for 1 ≤ i ≤ n, i 6= h.

• if X is a root non terminal and x is its headword, then x→ START is a
dependency.

For example, consider the sentence:

Workers dumped sacks into a bin.

The dependencies are:

Figure 11: Parse tree and extracted dependencies

6.4 Enhancements to Dependency Graphs

Using the above dependency graph as the base, various enhancements can be
applied to the graphs (Haghighi et al., 2005).

1. Collapse Collocations and Named-Entities: We collapse depen-
dency nodes which represent named entities (e.g. nodes [Swapnil] and
[Ghuge] could be collapsed into [Swapnil Ghuge]) and also collocations
listed in WordNet, including phrasal verbs (e.g., blow off in He blew off
his work).

2. Dependency Folding: It was found that it is useful to fold certain
dependencies (e.g. modifying prepositions such as “in”, ”’under” etc.)
so that modifiers became labels connecting the modifier’s governor and
dependent directly.
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3. Semantic Role Labeling: Graph representation was augmented with
Probank-style semantic roles. Each predicate adds an arc labeled with
the appropriate semantic role to the head of the argument phrase. This
helps to create links between words which share a deep semantic rela-
tion not evident in the surface syntax. Additionally, modifying phrases
are labeled with their semantic types (e.g., Pakistan got independence in
[1947]Temporal.), which should be useful in Question Answering tasks.

4. Co-reference links: Using a co-resolution tagger, coref links are added
throughout the graph. These links, connecting referring and referent en-
tities, are the only link between two sentences.

6.5 The Entailment Model

For hypothesis graph H, and text graph T , a matching M is a mapping from
the vertices of H to those of T . For vertex v in H, M(v) denotes its match in
T .

As is common in statistical machine translation, nodes in H are allowed to
map to fictitious NULL vertices in T if necessary.

Suppose the cost of matching M is Cost(M). If M is the set of such match-
ings, the cost of matching H to T is defined to be:

MatchCost(H,T ) = min
M∈M

Cost(M) (3)

Let V ertexSub(v,M(v)) be a model which gives us a cost in [0, 1], for substi-
tuting vertex v in H for M(v) in T . Then,

V ertexCost(M) =
1

Z

∑
v∈Hv

w(v) ∗ V ertexSub(v,M(v)) (4)

where w(v) is relative importance of vertex v, and Z is the normalizer,
∑

allv w(v).
Now, consider an edge e = (v, v′) ∈ HE , and let φM (e) be the path from M(v)
to M(v′) in T . Let PathSub(e, φM (e)) be a model for assessing the cost of
substituting a direct relation e ∈ HE for its counterpart, φM (e), under the
matching. This leads to formulation of RelationCost(M) in a similar fashion:

RelationCost(M) =
1

Z

∑
e∈HE

w(e) ∗ PathSub(e, φM (e)) (5)

The total cost function could then be expressed as a convex combination of the
two cost functions as:

Cost(M) = α ∗ V ertexCost(M) + (1− α) ∗RelationCost(M) (6)

6.6 Vertex Substitution Cost Model

The vertex substitution cost model is based on following factors.
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• Exact Match: v and M(v) are identical words/phrases.

• Stem Match: v and M(v)’s stems match or one is a derivational form
of the other; e.g., matching coaches to coach

• Synonym Match: v and M(v) are synonyms according to WordNet.

• Hypernym Match: v is a kind of M(v), as determined by WordNet.
Note that this feature is asymmetric.

• WordNet Similarity: v andM(v) are similar according to WordNet::Similarity
(e.g. low conceptual distance).

• LSA Match: v and M(v) are distributionally similar according to a freely
available Latent Semantic Indexing package, or for verbs similar according
to VerbOcean.

• POS Match: v and M(v) have the same part of speech.

• No Match: M(v) is NULL.

6.7 Path Substitution Cost Model

Similar to the Vertex Substitution Cost Model, we define Path Substitution
Cost Model based on following factors.

• Exact Match: M(v)→M(v′) is an en edge in T with the same label.

• PartialMatch: M(v) → M(v′) is an en edge in T , not necessarily with
the same label.

• AncestorMatch: M(v) is an ancestor of M(v′). An exponentially in-
creasing cost is used for longer distance relationships.

• KinkedMatch: M(v) and M(v′) share a common parent or ancestor in
T . An exponentially increasing cost is used based on the maximum of the
node’s distances to their least common ancestor in T.

6.8 Additional Checks

Certain additional checks can be applied to the system to improve its perfor-
mance (Haghighi et al., 2005). They are listed below.

• Negation Check: Check if there is a negation in a sentence. Example,

– T:Clinton’s book is not a bestseller.

– H:Clinton’s book is a bestseller.

• Factive Check: Non-factive verbs (claim, think, charged, etc.) in con-
trast to factive verbs (know, regret, etc.) have sentential complements
which do not represent true propositions.
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– T:Clonaid claims to have cloned 13 babies worldwide.

– H:Clonaid has cloned 13 babies.

• Superlative Check: invert the typical monotonicity of entailment. Ex-
ample,

– T: The Osaka World Trade Center is the tallest building in Western
Japan.

– H: The Osaka World Trade Center is the tallest building in Japan.

• Antonym Check: It is observed that the WordNet::Similarity measures
gave high similarity to antonyms. Explicit check of whether a matching
involved antonyms is done and unless one of the vertices had a negation
modifier, its rejected.

7 Semantics-based Approaches

Figure 12: The Stanford dependency graph for Bills on ports and immigration
were submitted by Senator Brownback, Republican of Kansas

Semantics-based approaches differ from those discussed earlier, in a sense, that
these approaches actually consider the meaning of the texts. These approaches
map language expressions to semantic representations. Some of the approaches
map language expressions to logical meaning representations (Tatu and Moldovan,
2005). Semantics based approaches rely heavily on knowledge resources such as
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WordNet, VerbOcean, VerbNet, DIRT, etc. In these approaches, semantics are
generally represented in a graphical structure.

Graph based matching algorithms were proposed by Haghighi et al. (2005),
Herrera et al. (2006). Natural logic based approaches like (MacCartney and
Manning, 2007) represent meaning of the text in the form of logic expressions
and then determine the truth value of the hypothesis. Other semantics based
approaches are mentioned in the summary.

8 Summary

Challenging evaluation forum like RTE included examples which not only re-
quired lexical match but also needed semantic relations to determine the entail-
ment. From various examples, it was clear that simple surface string matching
or syntactic overlapping is not sufficient to recognize entailment. As a result,
deep semantic approaches emerged. But extracting fine grained information
from the text is a difficult task. Hence deep semantic based approaches are also
not very robust. With the following tables mentioning various approaches, we
conclude our survey about textual entailment.

Approaches Description Results
Bilingual Corpora
(Mehdad et al.,
2011)

Use of bilingual parallel corpora as
a lexical resource for cross-lingual
text entailment.

RTE-3: Avg
Acc=62.37%
RTE-5: Avg
Acc=61.41%

Probabilistic
(Shnarch et al.,
2011)

Probabilistic modeling framework
for lexical entailment.

RTE-5:
F=44.7% RTE-
6: F=45.5%

Machine Learning
(Mehdad et al.,
2009)

Use of semantic knowledge based on
Wikipedia, used to enrich the simi-
larity measure between pairs of text
and hypothesis.

RTE-5:
Acc=66.2%,
Prec=66%

Shallow Semantic
approach (Sam-
mons et al., 2009)

Shallow semantic representation.
Alignment based approach is pro-
posed.

RTE-5 Dev:
Acc=66.7%,
Test: Acc=67%

Table 2: Recent work in the field of Text Entailment - Part 3
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Approaches Description Results
Machine Learning
(Ren et al., 2009)

System of classification which con-
siders lexical, syntactic and seman-
tic features. For semantic features,
WordNet is used.

RTE-5, 63.3%

Machine Learning
(Agichtein et al.,
2008)

Supervised Machine Learning ap-
proach. Use WordNet for semantic
similarity, NLTK to find path dis-
tances.

RTE-4,
Acc=58.8%,
Prec=60.0%

Probabilistic
(Harmeling, 2009)

Probabilistic Model of Entailment. RTE-2,
training:
Acc=62.5%,
Prec=65.51%
RTE-3,
training:
Acc=62.12%,
Prec=63.12%

Discourse Ex-
traction (Hickl,
2008)

New framework depends on extract-
ing a set of publicly-held beliefs -
known as discourse commitments.

RTE-2 and
3: Accuracy
84.93%

Syntactic similarity
(Androutsopoulos
and Malakasiotis,
2010)

Capture similarities at various ab-
stractions of the input. Use Word-
Net and features at syntactic level.

RTE-1 dataset:
Acc=52.88%,
Prec=52.77%
RTE-2 dataset:
Acc=57.88%,
Prec=56.5%
RTE-3 dataset:
Acc=64.63%,
Prec=63.26%

Tree Edit Distance Tree edit models for representing se-
quences of tree transformations. To
efficiently extract sequences of edits,
they employ a tree kernel heuristic
in a greedy search routine.

RTE-3:
Acc=62.8%,
Prec=61.9%

Tree Kernel based
approach (Mehdad
et al., 2010)

Based on off-the-shelf parsers and
semantic resources for recognizing
textual entailment. Syntax is ex-
ploited by means of tree kernels
while semantics is derived from
WordNet, Wikipedia etc.

RTE-2: Avg
Acc=59.8%,
RTE-3: Avg
Acc=64.5%,
RTE-5: Avg
Acc=61.5%

Table 3: Recent work in the field of Text Entailment - Part 2
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